

Plasma Enhanced CVD (PECVD)		
 Ionized chemical species allows a lower process temperature to be used Plasma helps dissociate the precursor molecules at lower temperatures). 		
 Film properties (e.g. mechanical stress) can be tailored by controlling ion bombardment with substrate bias voltage. 		
	Deposition Temperature	
	LPCVD	PECVD
$SiH_4 + NH_3 \implies Si_3N_4$	850° C	200-400°C
$SiH_4 + N_2O \implies SiO_2$	800°C	200-400°C
$TEOS + O_2 \implies SiO_2$	720°C	350°C
$SiH_4 + O_2 \implies SiO_2$	400°C	BSAC

